Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study introduces the EEG-FDL model, a novel optimized fuzzy deep learning approach for classifying Major Depressive Disorder (MDD) using EEG data. Integrating deep learning with fuzzy learning via the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), EEG-FDL optimizes fuzzy membership functions and backpropagation. The model handles noise and data uncertainty, achieving a remarkable 99.72% accuracy in distinguishing MDD from healthy EEG signals using 5-fold cross-validation on a large dataset. External validation further confirms its efficacy. EEG-FDL outperforms traditional classifiers due to its effective handling of uncertainties and optimized parameter tuning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2025.2484568 | DOI Listing |