98%
921
2 minutes
20
Shape-morphing particles that can switch their shapes in response to environmental stimuli have attracted considerable focus given their capacity to enhance the functionality of smart materials. However, shape-switching particles sensitive to light are rarely reported. Herein, a robust and facile strategy for the production of photoresponsive block copolymer (BCP) assemblies is developed via three-dimensional restricted coassembly of polystyrene--poly(4-vinylpyridine) (PS--P4VP) and azobenzene (Azo)-based photoactive additives under emulsion droplets. Upon alternating exposure to ultraviolet and visible light, isomerization of the Azo group causes the hydrophobic-hydrophilic transition of Azo within the P4VP phases. Therefore, the particle shape and internal nanostructure could be reversely modulated between an onion shape with a PS outer layer and an inverted onion with P4VP at the interface. Notably, the light-driven morphological behavior of BCP assemblies exhibits promising potential in controlled drug release, which positions them as compelling candidates for advanced biomedical and clinical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.5c00464 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States.
Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.
View Article and Find Full Text PDFBiomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
Adhesives are important in creating multilayer products, such as in packaging and construction. Most current hot-melt adhesives such as poly(ethylene-co-vinyl acetate) (EVA) and polyurethanes lack chemical recyclability and do not easily de-bond, complicating recycling. Here, we achieved tunable adhesive properties of chemically recyclable polyolefin-like multiblock copolymers through regulating the incorporation of crystalline hard blocks, amorphous soft blocks, and ester content highlighted by adhesive strengths up to 6.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
In this Article, we present a novel data analysis method for the determination of copolymer composition from low-resolution mass spectra, such as those recorded in the linear mode of time-of-flight (TOF) mass analyzers. Our approach significantly extends the accessible molecular weight range, enabling reliable copolymer composition analysis even in the higher mass regions. At low resolution, the overlapping mass peaks in the higher mass range hinder a comprehensive characterization of the copolymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.
View Article and Find Full Text PDF