Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train. In this work, we depart from a set of empirical observations that indicate the usefulness of internal representations built by contemporary deep diffusion-based generative models not only for generating but also predicting. We then propose to extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives. The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks. On top of our joint training approach, we present its application to the medical data domain, where we show how joint training can aid with the problems crucial in the medical data domain. We show that our Joint Diffusion achieves superior performance in semi-supervised setup, where human annotation is scarce, while at the same time providing decisions explanations through counterfactual examples generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2025.102619DOI Listing

Publication Analysis

Top Keywords

diffusion model
8
joint diffusion
8
joint training
8
medical data
8
data domain
8
domain joint
8
joint
6
jointdiffusion joint
4
joint representation
4
representation learning
4

Similar Publications

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

A Core-Shell Structured Microneedle Patch With Adjustable Release of Kinetically for the Treatment of Melasma.

Adv Healthc Mater

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.

Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.

View Article and Find Full Text PDF

Visible Light-Driven Membrane-Bound Compartment for Precise Regulation of Enzyme Activity.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF