Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction. The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2025.103765 | DOI Listing |