98%
921
2 minutes
20
Structurally ordered PtCo intermetallics are one of the most promising oxygen-reduction catalysts in proton exchange membrane fuel cells (PEMFCs) due to their intrinsically improved catalytic activity and stability relative to PtCo solid-solution alloys. However, increasing the heating temperature to achieve a desirable high degree of ordering results in severe particle agglomeration and low mass activity and stability. Herein, a two-step synthesis approach is developed to create an L1-PtCo intermetallic structure with an increased ordering degree and well-dispersed ultrafine particles. The first step of the synthesis yields ultrafine Pt nanoparticles that are well-dispersed on the ZIF-8-derived carbon support. The second adsorption step enables us to fine-tune the Pt and Co interfaces, assisted by optimal amino acids, to establish a favorable Co-rich environment around fine Pt nanoparticles, facilitating Co diffusion into the Pt crystalline under mild thermal conditions (<800 °C). This two-step ordered L1-PtCo catalyst is systematically evaluated using membrane electrode assemblies under heavy-duty vehicle (HDV) conditions and demonstrated exceptional performance and durability, retaining 1.35 A cm only a 7% loss in current density at 0.7 V after an extensive accelerated stress test of 150,000 voltage cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202510847 | DOI Listing |
J Biomol Struct Dyn
September 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.
View Article and Find Full Text PDFCNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFPediatr Nephrol
September 2025
Pediatric Nephrology Department, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
Copeptin, a stable glycopeptide derived from the precursor of arginine vasopressin (AVP), has emerged as a valuable surrogate biomarker for AVP due to its stability and ease of measurement. This narrative review explores the physiological role of copeptin, its utility as a diagnostic and prognostic biomarker in different kidney diseases, and its clinical relevance in renal tubular disorders. The clinical application of copeptin as a diagnostic biomarker is best established in the differential diagnosis of polyuria-polydipsia syndrome (PPS), distinguishing nephrogenic diabetes insipidus (NDI) from central diabetes insipidus (CDI) and primary polydipsia (PP).
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDF