Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drought stress significantly impacts plant growth and productivity, requiring complex adaptive responses to ensure survival. In eukaryotes, autophagy and the ubiquitin-proteasome system (UPS) are critical pathways for maintaining cellular homeostasis under stress. While their interaction is well-studied in animals, it remains poorly understood in plants, particularly under drought conditions. Here, we identify the E3 ubiquitin ligase SRAS1.1 as a key regulator of selective autophagy and drought tolerance in Arabidopsis, mediating its function through the ubiquitination and degradation of the autophagy receptor DSK2A. Loss of SRAS1.1 enhances drought tolerance by reducing water loss, increasing survival rates, and accelerating flowering. SRAS1.1 directly interacts with and ubiquitinates the autophagy receptor DSK2A, promoting its degradation via the 26S proteasome. Notably, under drought stress, SRAS1.1 relocates from the nucleus to the cytoplasm, associates with autophagosomes, and modulates autophagy-related gene expression and BES1 accumulation. These findings provide novel insights into UPS-autophagy crosstalk in plants and highlight SRAS1.1 as a promising target for genetic engineering to develop drought-resilient crops and to advance sustainable agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44319-025-00556-9DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
autophagy drought
8
tolerance arabidopsis
8
drought stress
8
autophagy receptor
8
receptor dsk2a
8
sras11
6
drought
6
autophagy
5
sras11 ligase
4

Similar Publications

Long non-coding RNAs: Silent contributors to plant survival under abiotic stress.

Biochem Biophys Res Commun

September 2025

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:

Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.

View Article and Find Full Text PDF

Identification of RAV transcription factors (B3-domain-containing) and functional analysis of OsRAV2 in rice blast and drought stress.

J Plant Physiol

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.

View Article and Find Full Text PDF

Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain.

Int J Hyg Environ Health

September 2025

ISGlobal, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain.

View Article and Find Full Text PDF

Nitrogen enhances post-drought recovery in wheat by modulating TaSnRK2.10-mediated regulation of TaNLP7.

Nat Plants

September 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

Drought stress affects plant growth and agricultural production, especially in the context of global climate change. Post-drought rehydration is crucial for plant recovery and sustained growth, yet the mechanisms underlying this process remain poorly understood. Nitrogen fertilizer plays a role in optimizing plant growth and enhancing stress resistance, but its role in post-drought recovery has not been fully elucidated.

View Article and Find Full Text PDF