Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Image-guided tumor ablation (IGTA) has revolutionized modern oncological treatments by providing minimally invasive options that ensure precise tumor eradication with minimal patient discomfort. Traditional techniques such as ultrasound (US), computed tomography, and magnetic resonance imaging have been instrumental in the planning, execution, and evaluation of ablation therapies. However, these methods often face limitations, including poor contrast, susceptibility to artifacts, and variability in operator expertise, which can undermine the accuracy of tumor targeting and therapeutic outcomes. Incorporating deep learning (DL) into IGTA represents a significant advancement that addresses these challenges. This review explores the role and potential of DL in different phases of tumor ablation therapy: preoperative, intraoperative, and postoperative. In the preoperative stage, DL excels in advanced image segmentation, enhancement, and synthesis, facilitating precise surgical planning and optimized treatment strategies. During the intraoperative phase, DL supports image registration and fusion, and real-time surgical planning, enhancing navigation accuracy and ensuring precise ablation while safeguarding surrounding healthy tissues. In the postoperative phase, DL is pivotal in automating the monitoring of treatment responses and in the early detection of recurrences through detailed analyses of follow-up imaging. This review highlights the essential role of DL in modernizing IGTA, showcasing its significant implications for procedural safety, efficacy, and patient outcomes in oncology. As DL technologies continue to evolve, they are poised to redefine the standards of care in tumor ablation therapies, making treatments more accurate, personalized, and patient-friendly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2516-1091/adfeab | DOI Listing |