Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the most important properties of human embryonic stem cells (hESCs) is their ability to exist in primed and naive pluripotent states. Our previous meta-analysis indicated the existence of heterogeneous pluripotent states derived from diverse naive protocols. In this study, we characterized a commercial, RSeT-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent the hypoxic growth conditions required by naive hESCs, although some RSeT cells (e.g., H1 cells) exhibit much lower single-cell plating efficiency and display altered or significantly retarded cell growth under both normoxia and hypoxia. Importantly, RSeT hPSCs lack many transcriptomic hallmarks of naive and formative pluripotency (the phase between naive and primed states). Integrative transcriptome analysis suggests that our primed and RSeT hESCs are similar to the early stage of post-implantation embryos, in line with previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs do not express naive surface markers such as SUSD2 and CD75 at significant levels. At the biochemical level, RSeT hESCs show differential dependence on FGF2 and co-independency on both Janus kinase (JAK) and TGFβ signaling in a cell line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of naive pluripotency. Our data suggest that human naive pluripotent potentials may be restricted in RSeT medium, which sustains FGF2 activity. Hence, this study provides new insights into pluripotent state transitions in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1093/stmcls/sxaf056DOI Listing

Publication Analysis

Top Keywords

rset hescs
20
pluripotent state
12
rset
9
naive formative
8
formative pluripotency
8
human embryonic
8
embryonic stem
8
stem cells
8
hescs
8
naive
8

Similar Publications

Resistance to Naive and Formative Pluripotency Conversion in RSeT Human Embryonic Stem Cells.

Stem Cells

August 2025

Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, 20892, USA.

One of the most important properties of human embryonic stem cells (hESCs) is their ability to exist in primed and naive pluripotent states. Our previous meta-analysis indicated the existence of heterogeneous pluripotent states derived from diverse naive protocols. In this study, we characterized a commercial, RSeT-based pluripotent state under various growth conditions.

View Article and Find Full Text PDF

Assembly of a stem cell-derived human postimplantation embryo model.

Nat Protoc

January 2025

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.

The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells.

View Article and Find Full Text PDF

Metabolic Quadrivalency in RSeT Human Embryonic Stem Cells.

bioRxiv

February 2024

NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Article Synopsis
  • Researchers discovered a new pluripotent state in human embryonic stem cells (hESCs) induced by RSeT medium, which prevents the conversion to a naïve state.
  • The study analyzed the metabolic characteristics of RSeT hESCs, revealing a unique metabolome that includes additional fatty acid oxidation and imbalanced nucleotide metabolism beyond the typical glycolysis and oxidative phosphorylation.
  • These findings suggest a complex metabolic behavior, termed metabolic quadrivalency, that supports hESC growth regardless of oxygen levels and limits their ability to revert to a naïve state.
View Article and Find Full Text PDF

Resistance to Naïve and Formative Pluripotency Conversion in RSeT Human Embryonic Stem Cells.

bioRxiv

April 2024

Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.

One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions.

View Article and Find Full Text PDF

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs).

View Article and Find Full Text PDF