98%
921
2 minutes
20
Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination. It comprises an object-centric neural transfer model for material representation and a radiance-sharing lighting system for efficient illumination. Traditional BSDF representations and spatial neural material representations lack expressiveness, requiring thousands of ray evaluations to converge to noise-free colors. Conversely, realtime methods trade quality for efficiency by supporting only diffuse materials. In contrast, our object-centric neural transfer model achieves compactness and expressiveness through an MLPbased decoder and vertex-attached latent features, supporting glossy effects with low memory overhead. For dynamic, varying lighting conditions, we introduce local light probes capturing scene radiance, coupled with an across-probe radiance-sharing strategy for efficient probe generation. We implemented our method in a real-time rendering engine, combining compute shaders and CUDA-based neural networks. Experimental results demonstrate that our method achieves real-time performance of less than 10 ms to render a frame and significantly improved rendering quality compared to baseline methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2025.3596146 | DOI Listing |
IEEE Trans Vis Comput Graph
August 2025
Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination.
View Article and Find Full Text PDFIFAC Pap OnLine
September 2024
ECE Dept., Northeastern University, Boston, MA 02115 USA.
There is an ongoing effort in the machine learning community to enable machines to understand the world symbolically, facilitating human interaction with learned representations of complex scenes. A pre-requisite to achieving this is the ability to identify the dynamics of interacting objects from time traces of relevant features. In this paper, we introduce GrODID (GRaph-based Object-Centric Dynamic Mode Decomposition), a framework based on graph neural networks that enables Dynamic Mode Decomposition for systems involving interacting objects.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2025
Despite the rapid progress in generative radiance fields, most existing methods focus on object-centric applications and are not able to generate complex urban scenes. In this paper, we propose UrbanGen, a solution for the challenging task of generating urban radiance fields with photorealistic rendering, accurate geometry, high controllability, and diverse city styles. Our key idea is to leverage a coarse 3D panoptic prior, represented by a semantic voxel grid for stuff and bounding boxes for countable objects, to condition a compositional generative radiance field.
View Article and Find Full Text PDFNeural Netw
September 2025
School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
Achieving visual reasoning is a long-term goal of artificial intelligence. In the last decade, several studies have applied deep neural networks (DNNs) to the task of learning visual relations from images, with modest results in terms of generalization of the relations learned. However, in recent years, object-centric representation learning has been put forward as a way to achieve visual reasoning within the deep learning framework.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2025
Wearable egocentric cameras and machine learning have the potential to provide clinicians with a more nuanced understanding of patient hand use at home after stroke and spinal cord injury (SCI). However, they require detailed contextual information (i.e.
View Article and Find Full Text PDF