TCF25 serves as a nutrient sensor to orchestrate metabolic adaptation and cell death by enhancing lysosomal acidification under glucose starvation.

Cell Rep

Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200331, China; College of Pharmacy, Ningxia Medical University, Yinchuan

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cells adapt to nutrient limitation by activating catabolic and inhibiting anabolic pathways, yet prolonged stress may lead to cell death. How cells orchestrate metabolic adaptation and cell death to nutrient stress is poorly understood. We conduct a genome-wide CRISPR-Cas9 screen to identify regulators in glucose-starvation-induced cell death and find a group of genes in lysosomal pathway is enriched following glucose starvation. We focus on one candidate gene, Transcriptional Factor 25 (TCF25). We find TCF25 enhances lysosomal acidification by targeting V-ATPase, promoting autophagy and ATP generation under glucose starvation. However, prolonged glucose starvation constitutively activates ferritinophagy via TCF25, increasing lysosomal membrane permeability (LMP) and leading to lysosome-dependent cell death (LDCD). Knocking out TCF25 or V-ATPase components prevents cell death. Furthermore, TCF25 deficiency protects mice from hepatic ischemia-reperfusion injury. Our findings identify TCF25 as a crucial nutrient sensor that regulates lysosomal activity, offering potential therapeutic targets for metabolic and ischemic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2025.116186DOI Listing

Publication Analysis

Top Keywords

cell death
24
glucose starvation
16
nutrient sensor
8
orchestrate metabolic
8
metabolic adaptation
8
adaptation cell
8
lysosomal acidification
8
tcf25
7
cell
6
death
6

Similar Publications

Breast cancer (BC) is one of the main causes of cancer-related death in women. The purpose of this study was to evaluate the expression of miR-605-5p in BC and its diagnostic and prognostic value. BC patients and healthy individuals who met the study criteria were included.

View Article and Find Full Text PDF

Rationale: Inflammation is central to chronic obstructive pulmonary disease (COPD) pathogenesis but incompletely represented in COPD prognostic models. Neutrophil to lymphocyte ratio (NLR) is a readily available inflammatory biomarker.

Objectives: To explore the associations of NLR with smoking status, clinical features of COPD, and future adverse outcomes.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF

Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.

View Article and Find Full Text PDF

Vitamin D3 reduces the viability of cancer cells in vitro and retard the EAC tumors growth in mice.

PLoS One

September 2025

Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST supported center, ICMR collaborating center of excellence - ICMR-CCoE), Department of Biochemistry (DST-FIST supported department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHE

Prior studies from our laboratory have shown that cancer cells exposed to vitamin D3 exhibited reduced proliferation in breast cancer cells due to the upregulation of p53 and downregulation of cyclin-D1. Furthermore, in mice, our group has demonstrated that administration of 125 µg/kg of vitamin D3 retarded the growth of EAC tumors. But, it is unknown whether vitamin D3 exerts similar anti-cancer effects against cell lines representing carcinomas of the liver, colon and rectum, cervix, and brain.

View Article and Find Full Text PDF