Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein-Taybi syndrome, Kabuki syndrome, and Sotos syndrome. This study reviews the literature on pilomatricomas occurring in syndromic contexts and presents a novel case linked to Apert syndrome. A systematic review was conducted using PubMed and Cochrane databases, focusing on case reports, case series, and reviews describing pilomatricomas associated with syndromes. A total of 1272 articles were initially screened; after removing duplicates and excluding articles without syndromic diagnoses or lacking sufficient data, 81 full-text articles were reviewed. Overall, 96 cases of pilomatricomas associated with genetic syndromes were identified. Reports of patients with Apert syndrome who do not develop pilomatricomas are absent in the literature. Pilomatricomas predominantly affect pediatric patients, with a slight female predominance, and are often the first manifestation of underlying genetic syndromes. Our study highlights previously unreported associations of pilomatricoma with Apert syndrome, providing molecular insights. This study contributes to understanding the clinical and molecular features of pilomatricomas in syndromic contexts and underscores the importance of genetic analysis for accurate diagnosis and management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371956PMC
http://dx.doi.org/10.3390/dermatopathology12030024DOI Listing

Publication Analysis

Top Keywords

apert syndrome
16
syndromic contexts
12
pilomatricomas associated
12
genetic syndromes
12
syndrome
8
pilomatricomas
8
pediatric patients
8
associated genetic
8
literature pilomatricomas
8
pilomatricoma syndromic
4

Similar Publications

Not Apert Syndrome: A Critique of a Recent Case Report by Pan and Yang.

Am J Med Genet A

September 2025

MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.

View Article and Find Full Text PDF

Fibroblast growth factor 2 (FGF2) is known to play a role in skeletal muscle development and growth. We examined two populations of myogenic precursor cells for their responses to FGF2 using both extraocular and limb skeletal muscle. Fluorescence-activated cell sorting (FACS) was used to isolate two different populations of myogenic precursor cells, the EECD34 cells [positive for CD34, and negative for Sca1, CD31, and CD45] and PAX7-positive cells, from tibialis anterior and extraocular muscles of mice.

View Article and Find Full Text PDF

Pilomatricomas are benign tumors originating from hair follicle matrix cells and represent the most common skin tumors in pediatric patients. Pilomatricomas may be associated with genetic syndromes such as myotonic dystrophy, familial adenomatous polyposis (FAP), Turner syndrome, Rubinstein-Taybi syndrome, Kabuki syndrome, and Sotos syndrome. This study reviews the literature on pilomatricomas occurring in syndromic contexts and presents a novel case linked to Apert syndrome.

View Article and Find Full Text PDF

Apert syndrome is a recognizable craniofacial condition characterized by craniosynostosis, hypertelorism, exorbitism, midface hypoplasia, and complex symmetrical bony and cutaneous 'mitten' syndactyly of all four limbs. Around 98% of affected patients have one of two heterozygous missense variants in the FGFR2 gene, encoding either p.(Ser252Trp) (S252W) or p.

View Article and Find Full Text PDF

Craniosynostosis is a multigenic congenital condition in which one or more calvarial sutures have prematurely fused during the development of the fetus. Mutation in FGFR2 are associated with the development of syndromic craniosynostosis, such as Crouzon, Apert, and Pfeifer Syndrome. Investigation of FGFR2-linked craniosynostosis is hindered by the lack of appropriate in vitro models.

View Article and Find Full Text PDF