A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Uric Acid Disrupts Heart Development in Zebrafish by Inhibiting the Wnt Signaling Pathway. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Congenital heart disease (CHD) is the most common birth defect and involves intricate developmental mechanisms. Uric acid (UA), the final metabolite of purine degradation in humans, has a largely unexplored role in heart development. This study investigated the effects of elevated UA levels-both exogenous and endogenous-on cardiac development in a zebrafish model and explored the involvement of Wnt signaling in this process. UA elevation was achieved through exogenous UA exposure, in vivo overexpression of xdh, and knockdown of uox. Expression levels of Wnt pathway components (wnt1, wnt3a, wnt6b, and β-catenin), cardiac progenitor markers (mesp1 and isl1), neural crest cell markers (sox10 and crestin), and cardiac development genes (nkx2.5, tbx5a, and fgf10a) were assessed at key developmental stages. All UA-elevating strategies significantly increased UA concentrations and led to phenotypes including pericardial edema and reduced heart rate at 72 h post-fertilization (hpf). These phenotypes were accompanied by downregulation of Wnt signaling and cardiac development genes. Treatment with the Wnt activator CHIR99021 partially rescued the cardiac defects induced by UA overload. These findings demonstrate that elevated UA-whether exogenous or endogenous-can disrupt cardiac development in zebrafish, at least in part by suppressing Wnt signaling, thereby impairing downstream gene networks essential for heart morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-025-10053-zDOI Listing

Publication Analysis

Top Keywords

wnt signaling
16
cardiac development
16
development zebrafish
12
uric acid
8
heart development
8
development genes
8
development
6
wnt
6
cardiac
6
heart
5

Similar Publications