98%
921
2 minutes
20
Dissolved organic matter (DOM) is critical to soil ecosystems, with its dynamics influenced by exogenous substances like microplastics (MPs)-derived dissolved organic matter (MPs-DOM) from agricultural mulches. However, the impacts of MPs-DOM, especially at environmentally relevant concentrations, on soil DOM dynamics remain unclear. Here, we examined DOM transformation in yellow (YS) and black (BS) soils upon the addition of MPs-DOM, leached from biodegradable and nonbiodegradable mulches under ultraviolet irradiation (UV-MPs-DOM) and dark conditions (D-MPs-DOM), at environmentally relevant concentrations (3 mg C/kg). Results showed that extraction conditions, rather than mulch type, predominantly affected the bioavailability of MPs-DOM. UV-MPs-DOM, enriched in lipid-like and protein/amino sugar-like compounds, promoted soil DOM transformation. In YS, characterized by lower microbial diversity, UV-MPs-DOM enhanced DOM lability more than D-MPs-DOM. Conversely, in BS, with a diverse microbial community, UV-MPs-DOM with high bioavailability not only directly altered soil DOM composition but also was rapidly metabolized by the soil microbiome, particularly Proteobacteria, thereby resulting in increased soil DOM recalcitrance. However, the low bioavailability of D-MPs-DOM primarily exerted direct effects, contributing to its accumulation and increase in soil DOM lability. These findings provide novel evidence that MPs-DOM at environmentally relevant concentrations can alter soil DOM through distinct pathways, highlighting its potential long-term ecological risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5c07539 | DOI Listing |
Front Plant Sci
August 2025
Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation-State Research Institute, Puławy, Poland.
Introduction: Soil dissolved organic matter (DOM) regulates nutrient cycling and carbon sequestration, yet how cropping systems (rotation vs. monoculture) shape the vertical distribution and molecular traits of DOM remains unclear.
Methods: We leveraged a long-term experiment (est.
Int J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFWater Res
September 2025
Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China. Electronic address:
Plantation forest areas are rapidly expanding worldwide. Forests at different stand ages exhibit distinct patterns in litterfall input, soil microbial diversity, and enzyme activity, all of which potentially affect the properties of dissolved organic matter (DOM). DOM is an important precursor of disinfection byproducts (DBPs).
View Article and Find Full Text PDFEnviron Pollut
September 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China. Electronic address:
Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:
Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).
View Article and Find Full Text PDF