98%
921
2 minutes
20
Introduction: In the context of increasing pressure on agricultural resources, hydroponic systems such as the nutrient film technique (NFT) are gaining prominence for their ability to optimize water use and space efficiency, and crop productivity in controlled environments. Lettuce ( L.), a high-value leafy vegetable, is a key cash crop in controlled-environment agriculture. Light quality and intensity -critical drivers of plant physiology- require constant monitoring in soilless systems to ensure consistent performance. However, the interaction effects of NFT system design and cultivar selection on physiological behavior and yield stability remain underexplored.
Methods: This study evaluated the growth, yield, and physiological responses of two lettuce cultivars, Tropicana and Starfighter, cultivated in three NFT configurations: module I (8-channel) with a horizontal layout; and module II (13-channel) and module III (10-channel), both with pyramidal layouts. Although all the treatments were exposed to similar microenvironmental conditions, the photosynthetic photon flux density (PPFD) was monitored throughout the crop cycle to maintain light uniformity. Agronomic performance was evaluated through biometric parameters in roots, stems, leaves and heads, and the yield was calculated per unit area; while the physiological responses included measurements of relative and total chlorophyll content and nitrate reductase enzymatic activity.
Results And Discussion: Tropicana generally outperformed Starfighter, particularly in modules II and III, which also supported higher pigment accumulation and improved nitrogen metabolism across both cultivars. The highest yields were achieved by Tropicana in modules II (14.14 kg·m) and III (13.96 kg·m), closely followed by Starfighter in module II (13.45 kg·m). These findings highlight how strategic integration of system configuration and cultivar selection can increase physiological efficiency, stabilize yields, and promote sustainability in hydroponic lettuce production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361213 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1639002 | DOI Listing |
Plant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF