Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When a patient survives the first 24 h in intensive care, outcome prediction is crucial for further treatment decisions. As recent advances have shown that Artificial Intelligence (AI) outperforms clinicians in prognostication, and especially generative AI has developed rapidly in the past ten years, this scoping review aimed to explore the use of generative AI models for outcome prediction in intensive care medicine. Of the 481 records found in the search, 119 studies were subjected to abstract screening and, when necessary, full-text review for eligibility assessment. Twenty-two studies and two review articles were finally included. The studies were categorized into three prototypical use cases for generative AI in outcome prediction in intensive care: (i) data augmentation, (ii) feature generation from unstructured data, and (iii) prediction by the generative model. In the first two use cases, the generative models worked together with downstream predictive models. In the third use case, the generative models made the predictions themselves. The studies within data augmentation either fell into the area of compensation for class imbalances by producing additional synthetic cases or imputation of missing values. Overall, Generative Adversarial Network (GAN) was the most frequently used technology (8/22 studies; 36%), followed by Generative Pretrained Transformer (GPT) (7/22 studies; 32%). All publications except one were from the last four years. This review shows that generative AI has immense potential in the future, and continuous monitoring of new technologies is necessary to ensure that patients receive the best possible care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361121PMC
http://dx.doi.org/10.3389/fdgth.2025.1633458DOI Listing

Publication Analysis

Top Keywords

outcome prediction
16
intensive care
16
prediction intensive
12
generative models
12
generative
9
artificial intelligence
8
scoping review
8
cases generative
8
data augmentation
8
studies
6

Similar Publications

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Disruptive behavior and emotional problems - especially anxiety - are common in children and frequently co-occur. However, the role of co-occurring emotional problems in disruptive behavior intervention response is unclear. This study aimed to compare the effectiveness of an indicated prevention program in children with disruptive behavior problems with vs.

View Article and Find Full Text PDF

Background: The treatment of mandibular angle fractures remains controversial, particularly regarding the method of fixation. The primary aim of this study was to compare surgical outcomes following treatment with 1-plate versus 2-plate fixation across two oral and maxillofacial surgery clinics. The secondary aim was to evaluate associations between patient-, trauma-, and procedure-specific factors with postoperative complications and to identify high-risk patients for secondary osteosynthesis.

View Article and Find Full Text PDF

Background: Current scoring systems for hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) severity are few and lack reliability. The present work focused on screening predicting factors for HTG-SAP, then constructing and validating the visualization model of HTG-AP severity by combining relevant metabolic indexes.

Methods: Between January 2020 and December 2024, retrospective clinical information for HTG-AP inpatients from Weifang People's Hospital was examined.

View Article and Find Full Text PDF

Background: Thyroid nodules (TNs) are frequent and often benign. Accurately differentiating between benign and malignant nodules is crucial for proper management. This research aims to use ultrasonography to examine TNs and identify possible risk factors in order to improve patient outcomes and diagnostic accuracy.

View Article and Find Full Text PDF