Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
BackgroundQuantitative analysis with habitat clustering represents an innovative, non-invasive approach to quantify tumor heterogeneity.PurposeTo characterize intratumoral spatial heterogeneity using dual-energy computed tomography (DECT) in breast cancer patients and investigate the performance of habitat imaging in predicting axillary lymph node (ALN) metastasis compared with radiomics.Material and MethodsA total of 135 patients were randomly assigned to a training group (n = 95) and a testing group (n = 40). An additional 50 patients served as the validation group. Four intratumoral subregions with different wash-in and wash-out enhancement modes were identified through cluster analysis of arterial and venous phase iodine concentration maps. The percentage of each subregion was quantified to construct habitat imaging. Radiomics features were extracted from iodine concentration maps, and Boruta was used for feature selection. Habitat imaging and radiomics model performance was compared by net reclassification improvement (NRI) and integrated discrimination improvement (IDI).ResultsHabitat imaging demonstrated areas under the receiver operating characteristic curve (AUCs) of 0.82, 0.80, and 0.78 in the training, testing, and validation groups, respectively. In addition, the AUCs of the radiomics models were 0.78, 0.70, and 0.65 in the training, testing, and validation groups, respectively. NRI and IDI demonstrated that habitat imaging was statistically superior to the radiomics model (< 0.05).ConclusionsHabitat imaging based on intratumoral spatial heterogeneity can predict ALN metastasis in breast cancer and was superior to radiomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/02841851251333291 | DOI Listing |