Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Improving the targeting of nanomedicines in cancer diagnosis and treatment can not only greatly enhance the drug efficacy, but also reduce the systemic toxicity of drugs. The design of cellulose-based nanomaterials with targeted recognition and stimulatory response to overexpressed CD44 receptor and glutathione (GSH) in the cell membrane and cytoplasm of cancer cells, respectively, can significantly improve the targeting effect and reduce the biotoxicity due to the two-site recognition effect. Herein, carboxylated nanocellulose as a carrier to covalently graft with disulfide-modified anthocyanin dye molecules (Cyss) to obtain TOCNC-Cyss, and hyaluronic acid (HA) was assembled on the surface of TOCNC-Cyss to construct cellulose-based nanocomposite TOCNC-Cyss@HA (TCH). TCH targets the CD44 receptor on the surface of cancer cell membranes by HA, and overexpressed glutathione to break the disulfide bond and release fluorescent dyes. TCH can light up cancer cells and generate superoxide anion free radicals under the irradiation of 660 nm laser, induce the apoptosis rate of breast cancer cells to 76%, and have very low toxicity to normal cells. The design of dual-targeting site nanocomposites provides an idea for the application of cellulose in targeted fluorescence imaging and therapy of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-025-07478-2 | DOI Listing |