Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone-eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid, on the intracochlear FBR and electrical impedance post-implantation in a murine model. Preliminary impedance data in humans are also provided as a complement to the murine data to illustrate generalizability and reinforce implications related to clinical application. The left ears of CX3CR1 Thy1 (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurements of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggests that dexamethasone-eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368128PMC
http://dx.doi.org/10.1038/s41598-025-10739-yDOI Listing

Publication Analysis

Top Keywords

electrical impedance
16
murine model
16
dexamethasone-eluting cochlear
12
cochlear implants
8
foreign body
8
body response
8
fbr electrical
8
impedance data
8
dual reporter
8
reporter mice
8

Similar Publications

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Objectives: In patients with cochlear implants, tools for measuring intracochlear electric environment as well as neural responses to electrical stimulation are widely available. This study aimed to investigate the possible correlation of changes in the responsiveness of the auditory nerve measured by neural response telemetry with changes in the peak and spread of the intracochlear electric field measured by transimpedance matrix (TIM) in patients implanted with straight electrode arrays.

Design: In this retrospective study, we analyzed a cohort of 144 ears of 113 consecutive patients who were implanted with Slim Straight electrode array (Cochlear Ltd.

View Article and Find Full Text PDF

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

The flavonoid rutin protects against imidacloprid-induced osmotic and electric disruptions in Africanized honey bees.

PLoS One

September 2025

Departamento de Biología, Escuela de Ciencias e Ingeniería, Universidad del Rosario, Bogotá, Colombia.

Honey bees (Apis mellifera) are essential pollinators threatened by sublethal effects of pesticides such as imidacloprid, a widely used neonicotinoid that disrupts the central nervous system. However, many of the systemic effects are poorly understood, especially on the physiological homeostasis of the honey bee. We evaluated the effects of oral administration of imidacloprid and the flavonol rutin on the properties of extracellular fluid (ECF) in Apis mellifera.

View Article and Find Full Text PDF

Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.

View Article and Find Full Text PDF