Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Total internal reflection fluorescence (TIRF) microscopy enables the observation of complex bioassemblies and macromolecular dynamics in high spatial-temporal resolution at the single-molecule level in real time. Through TIRF illumination, fluorophores near a sample substrate are selectively excited within an evanescent field, thereby overcoming the axial diffraction limit of light. Prism-based TIRF (p-TIRF) microscopes are relatively straightforward to construct and can be readily adapted to accommodate a wide range of experimental applications, including the examination of macromolecular complexes, the study of the behavior of vesicles and small organelles, and the investigation of protein-DNA complexes at the single-molecule level. These experiments can give unique insights into the mechanisms driving the molecular interactions that underline many fundamental activities within the cell by providing information on fluctuation distributions and unusual events. In this paper, we present a detailed and cost-effective protocol for constructing a p-TIRF setup using an existing confocal microscope, utilizing the same light source for both modalities. Additionally, we provide a step-by-step tutorial on building, assembling, and aligning the p-TIRF setup and preparing the sample for single-molecule fluorescence resonance energy transfer (smFRET) experiments. This article will be particularly helpful for laboratories equipped with a confocal microscope seeking to expand their experimental capabilities by integrating TIRF-based approaches. © 2025 Wiley Periodicals LLC. Basic Protocol: Microscopy setup for TIRF Support Protocol 1: Construction of prism holder and prism holder carrier arm Support Protocol 2: Preparation of sample chamber with sample Support Protocol 3: Slide preparation and KOH etching Support Protocol 4: Preparation of biotinylated DNA Holliday junctions immobilized on slides Support Protocol 5: Preparation of DNA Holliday junctions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpz1.70165DOI Listing

Publication Analysis

Top Keywords

support protocol
20
protocol preparation
12
prism-based tirf
8
smfret experiments
8
single-molecule level
8
p-tirf setup
8
confocal microscope
8
prism holder
8
dna holliday
8
holliday junctions
8

Similar Publications

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Background: To assess the efficacy and safety of tenecteplase in patients presenting within 24 hours of symptom onset with a large vessel occlusion and target mismatch on perfusion computed tomography.

Methods: ETERNAL-LVO was a prospective, randomized, open-label, blinded end point, phase 3, superiority trial where adult participants with a large vessel occlusion, presenting within 24 hours of onset with salvageable tissue on computed tomography perfusion, were randomized to tenecteplase 0.25 mg/kg or standard care across 11 primary and comprehensive stroke centers in Australia.

View Article and Find Full Text PDF

Background: Nutrition underpins athletic performance, enhancing training, reducing injury risk, and accelerating recovery. In the event of an injury, performance dietitians (PDs) and nutritionists' (PNs) play a vital role by tailoring nutritional strategies to support tissue repair, optimize athlete's recoveries, and return to play.

Objectives: This study explored nutritional strategies recommended and employed by Irish PDs and PNs to assess, manage, and support athletes during the initial stages of sports-related injuries.

View Article and Find Full Text PDF

Introduction: Acupuncture has emerged as an effective adjunctive therapy for polycystic ovary syndrome (PCOS) with concern on the higher rate of adverse events (AE). In addition, timing of intervention, specific acupoints, and stimulation strength are concerning, as high-stimulation electroacupuncture (EA) may increase miscarriage risk. This review aims to systematically evaluate the safety profile of acupuncture in PCOS.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF