Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disorder triggered by immune responses and genetic factors. Currently, there is no cure for IBD, and its etiology remains unclear. As a result, early detection and diagnosis of IBD pose significant challenges. Therefore, investigating biomarkers in peripheral blood is highly important, as they can assist doctors in the early identification and management of IBD.

Methods: We used a multichip joint analysis approach to explore the database thoroughly. On the basis of methods such as artificial neural networks (ANNs), machine learning techniques, and the SHAP model, we developed a diagnostic model for IBD. To select genetic features, we utilized three machine learning algorithms, namely, least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest (RF), to identify differentially expressed genes. Additionally, we conducted an in-depth analysis of the enriched molecular pathways of these differentially expressed genes through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Moreover, we used the SHAP model to interpret the results of the machine learning process. Finally, we examined the relationships between the differentially expressed genes and immune cells.

Results: Through machine learning, we identified four crucial biomarkers for IBD, namely, LOC389023, DUOX2, LCN2, and DEFA6. The SHAP model was used to elucidate the contribution of the differentially expressed genes to the diagnostic model. These genes were associated primarily with immune system modulation and microbial alterations. GO and KEGG pathway enrichment analyses indicated that the differentially expressed genes demonstrated associations with molecular pathways such as the antimicrobial and IL-17 signaling pathways. By performing correlation and differential analyses between differentially expressed genes and immune cells, we found that M1 macrophages exhibited stable differential changes in all four differentially expressed genes. M2 macrophages, resting mast cells, neutrophils, and activated memory CD4 T cells all showed significant differences in three of the differentially expressed genes.

Conclusion: We identified differentially expressed genes (LOC389023, DUOX2, LCN2, and DEFA6) with significant immune-related effects in IBD. Our findings suggest that machine learning algorithms outperform ANNs in the diagnosis of IBD. This research provides a theoretical foundation for the clinical diagnosis, targeted therapy, and prognostic evaluation of IBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366088PMC
http://dx.doi.org/10.1186/s12967-025-06838-zDOI Listing

Publication Analysis

Top Keywords

differentially expressed
36
expressed genes
32
machine learning
20
shap model
12
genes
10
differentially
9
expressed
9
inflammatory bowel
8
bowel disease
8
multichip joint
8

Similar Publications

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Inflammatory gene expression profile of oral plasmablastic lymphoma.

Virchows Arch

September 2025

Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.

Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. In this study, we investigated the molecular correlates of impaired extinction of alcohol seeking during forced abstinence using a mouse model of AUD in the automated IntelliCage social system. This model distinguished AUD-prone and AUD-resistant animals based on the presence of ≥2 or <2 criteria of AUD, respectively.

View Article and Find Full Text PDF

Excitatory cortical neurons from CDKL5 deficiency disorder patient-derived organoids show early hyperexcitability not identified in neurogenin2 induced neurons.

Neurobiol Dis

September 2025

F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.

CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation.

View Article and Find Full Text PDF