Effect of Mutations on the Evolution of Extended Spectrum β-lactamases (ESBL).

Protein J

Department of Biological Sciences, Adamas University, Barrackpore-Barasat Road, 24 Parganas North, Jagannathpur, Kolkata, West Bengal, India.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial antimicrobial resistance is a great public health threat worldwide, a situation that is much escalated by the rapid propagation of Extended Spectrum β-lactamase (ESBL) enzymes. These can hydrolyze and inactivate a broad range of β-lactams, including third-generation cephalosporins, penicillin, and aztreonam and are known to be associated with various bacterial infections, ranging from uncomplicated urinary tract infections to life-threatening sepsis.Variation is the essential raw material of Darwinian evolution and the accumulation of mutations plays one of the most important roles in it. Sequential acquisition of spontaneous mutations followed by successive rounds of selection can be attributed as one of the major reasons for the rapid diversification of ESBL enzymes. The ESBLs are excellent examples of 'microevolution' that led to 'gain-of-function' with an extended substrate spectrum. However, acquiring newer phenotypes sometimes comes with fitness costs and different mutational pathways interact with each other, triggering both additive and non-additive fitness to generate a rugged fitness landscape, that influences the path a strain must follow to adapt and evolve under selection pressure. Therefore, it is important to understand the role of mutations in the emergence of these enzyme variants. This review focuses on the understanding of different facades of mutational pathways that lead to the adaptive evolution of ESBL phenotype. The structural and mechanistic basis of the extension of the substrate spectrum by mutations are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-025-10284-7DOI Listing

Publication Analysis

Top Keywords

extended spectrum
8
esbl enzymes
8
substrate spectrum
8
mutational pathways
8
mutations
5
mutations evolution
4
evolution extended
4
spectrum
4
spectrum β-lactamases
4
esbl
4

Similar Publications

Background: Escherichia coli ST131 and clade H30Rx are the most prevalent extended-spectrum β-lactamase-producing E. coli (ESBL-EC) causing bacteremia and urinary tract infections globally and in Sweden. Previous studies have linked ST131-H30Rx with septic shock and mortality, as well as prolonged carriage.

View Article and Find Full Text PDF

Review of engineered magnetic chitosan nanoparticles for drug delivery: Advances, challenges, and future prospects.

Int J Biol Macromol

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:

Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.

View Article and Find Full Text PDF

Swept Source Optical Coherence Tomography Imaging of the Optic Pit Complex.

Retina

September 2025

From the Vitreous, Retina, Macula Consultants of New York, New York, NY.

Purpose: To reassess the anatomic basis of optic disc pit maculopathy (OPM) using swept-source optical coherence tomography (SS-OCT) and to characterize the broader structural abnormalities comprising the optic pit complex.

Methods: Sixteen patients with OPM were imaged using a high-resolution SS-OCT system (DREAM OCT). Cross-sectional and volume-rendered scans were analyzed for lamina cribrosa defects, intraneural cavitations, and pathways for fluid entry into or beneath the retina.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF