98%
921
2 minutes
20
Active semiflexible filaments are crucial for biophysical processes, yet insights into their single-filament behavior have predominantly relied on theory and simulations, owing to the scarcity of controllable synthetic systems. Here, we present an experimental platform of active semiflexible filaments composed of dielectric colloidal particles activated by an alternating electric field that induces contractile or extensile electrohydrodynamic (EHD) flows. Our experiments reveal that contractile flow-generating filaments (CFs) undergo softening, significantly expanding the range of accessible conformations, whereas extensile filaments (EFs) exhibit active stiffening. By independently tuning filament elasticity and activity, we show that the competition between elastic restoring forces and emergent hydrodynamic interactions along the filament governs conformational dynamics. Specifically, we find that the time scale of conformational dynamics governs the transport of active filaments: enhanced fluctuations lead to diffusive motion despite activity, whereas activity-induced stiffening enables directed propulsion in nonlinear filaments. Our findings highlight that conformational changes, not just geometric or chemical asymmetry, enable propulsion of flexible microswimmers. These insights are essential for designing flexible microswimmers, whose transport can be tailored through controlled activity and shape changes. Additionally, our system provides a powerful platform for gaining fundamental insights into active filament dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c08920 | DOI Listing |
J Cell Sci
September 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematics, University of York, York, UK.
Active suspensions, which consist of suspended self-propelling particles such as swimming microorganisms, often exhibit non-trivial transport properties. Continuum models are frequently employed to elucidate phenomena in active suspensions, such as shear trapping of bacteria, bacterial turbulence and bioconvection patterns in suspensions of algae. Yet, these models are often empirically derived and may not always agree with the individual-based description of active particles.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematics, University of York, York, UK.
The combined effect of axial stretching and cross-stream diffusion on the downstream transport of solute is termed Taylor dispersion. The dispersion of active suspensions is qualitatively distinct: viscous and external torques can establish non-uniform concentration fields with weighted access to shear, modifying mean drift and effective diffusivity. It would be advantageous to fine-tune the dispersion for systems such as bioreactors, where mixing or particle separation can improve efficacy.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, China.
Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.
View Article and Find Full Text PDF