Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present a series of experiments investigating the flow regimes and repose angles of highly concave particle packings in a rotating drum. By varying grain geometry from spherical to highly nonconvex shapes, adjusting frictional properties and the particle number of branches, we examine how these parameters and the drum speed influence the flow behavior. Our study identifies two distinct flow regimes: the rolling regime, where granular matter exhibits solid-like behavior near the walls and flows like a liquid near the free surface, and the slumping regime, characterized by cyclic avalanches and solid body rotations. Using quantitative criteria such as the repose angle difference and the area ratio of particle packings, we construct phase diagrams delineating the crossover between these regimes. Our findings highlight the significant effects of particle concavity, friction, and rotation speed on the flow dynamics of granular materials, providing new insights into the mechanical behaviors of metagranular matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/lygy-vjlj | DOI Listing |