98%
921
2 minutes
20
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubit gates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-z (ccz) gate in a flip-chip superconducting quantum processor with tunable couplers. This direct ccz gate is implemented by simultaneously leveraging two tunable couplers interspersed between three qubits to enable three-qubit interactions, achieving an average final state fidelity of 97.94% and a process fidelity of 93.54%. This high fidelity cannot be achieved through a simple combination of single- and two-qubit gate sequences from processors with similar performance levels. Our experiments also verify that multilayer direct implementation of the ccz gate exhibits lower leakage compared to decomposed gate approaches. As a showcase, we utilize the ccz gate as an oracle to implement the Grover search algorithm on three qubits, demonstrating high performance with the target probability amplitude significantly enhanced after two iterations. These results highlight the advantage of our approach, and facilitate the implementation of complex quantum circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/lvb9-pfr3 | DOI Listing |
Phys Rev Lett
August 2025
Institute of Physics, Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China.
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubit gates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-z (ccz) gate in a flip-chip superconducting quantum processor with tunable couplers.
View Article and Find Full Text PDFNature
February 2024
Department of Physics, Harvard University, Cambridge, MA, USA.
Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction (QEC) for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits.
View Article and Find Full Text PDFEntropy (Basel)
September 2022
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China.
Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize the three-qubit refined Deutsch-Jozsa algorithm and three-qubit Grover search.
View Article and Find Full Text PDF