Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growing global energy demand and worsening climate change highlight the urgent need for clean, efficient and sustainable energy solutions. Among emerging technologies, atomically thin two-dimensional (2D) materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties, high surface area and efficient charge transport capabilities. This review explores recent progress in photovoltaics incorporating 2D materials, focusing on their application as hole and electron transport layers to optimize bandgap alignment, enhance carrier mobility and improve chemical stability. A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials, with a particular focus on strategies to enhance crystallization, passivate defects and improve overall cell efficiency. Additionally, the application of 2D materials in organic solar cells is examined, particularly for reducing recombination losses and enhancing charge extraction through work function modification. Their impact on dye-sensitized solar cells, including catalytic activity and counter electrode performance, is also explored. Finally, the review outlines key challenges, material limitations and performance metrics, offering insight into the future development of next-generation photovoltaic devices encouraged by 2D materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361036PMC
http://dx.doi.org/10.1007/s40820-025-01869-zDOI Listing

Publication Analysis

Top Keywords

solar cells
12
materials
6
emerging role
4
role materials
4
materials photovoltaics
4
photovoltaics efficiency
4
efficiency enhancement
4
enhancement future
4
future perspectives
4
perspectives growing
4

Similar Publications

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF

This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.

View Article and Find Full Text PDF

All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF