98%
921
2 minutes
20
Cocrystallization is a specific crystal engineering strategy widely used to enhance the dissolution rate or bioavailability of active pharmaceutical ingredients. In this work, we demonstrate how cocrystallization can also be used to tune surface properties of crystalline particles, such as facet-specific surface chemistry, polarity, and wettability. As a model system, we have isolated a cocrystal of quercetin (Que) with imidazole (Im). Que is widely recognized for its potential antioxidative and antibacterial properties and other potentially beneficial therapeutic effects. Surface chemistry is a property that can affect ease of manufacturability (e.g., flowability) and storage stability (e.g., tendency to agglomerate) for particulate materials; here, we used cocrystallization to modify this property for Que particles. The screening of suitable coformers was first performed in silico using a method based on molecular complementarity and hydrogen bond (H-bond) propensity scores. Experiments were conducted using the identified coformers via slurrying in different solvents. The cocrystal was identified and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and solid-state nuclear magnetic resonance (SSNMR). The Que-Im crystal structure was solved by single-crystal X-ray diffraction (SXRD) and characterized computationally, using the attachment energy model, and experimentally by contact angle measurements. Structural and vibrational analyses showed a major modification in intermolecular interactions of Que-Im compared to pure Que polymorphs. The contribution of the H-bond and π-π stacking interactions to the crystal energy is similar, but the crystal morphology exposes a predominant facet growing via van der Waals interactions. As a result, Que-Im is more hydrophobic than the dihydrate (QDH) and dimethyl sulfoxide (QDMSO) solvate forms. The shift in the average water droplet contact angle from 38.8 ± 1.0° (QDMSO), 48.0 ± 3.2° (QDH) to 78.5 ± 3.9° (Que-Im) is strong evidence of a marked decrease in hydrophilicity of the target compound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355690 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.5c00634 | DOI Listing |
J Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
M. Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India.
Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.
The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Pharmacy, Minhang Hospitial, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
Raman spectroscopy with surface-enhanced Raman scattering (SERS) through metal substrates is a highly precise bioimaging technique. Alternatively, recently discovered small molecules to enhance the Raman signal intensities through their self-stacking, termed stacking-induced intermolecular charge transfer-enhanced Raman scattering (SICTERS), offer ultrasensitive in vivo Raman imaging free of substrates. Molecular engineering to increase the SICTERS intensity and to tune photothermal conversion efficiency of these molecules is critical for furthering their biomedical application but not yet feasible.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
MXenes exhibit remarkable mechanical properties due to their unique structural properties and strong atomic bonding, making them highly competitive among 2D materials. Forming heterojunctions between TMDs and MXenes offers a promising strategy to enhance material performance for advanced applications. Although extensive studies have explored the electronic and chemical properties of MXenes-based heterojunctions, investigations into their mechanical properties, particularly the effects of surface functional groups, remain limited.
View Article and Find Full Text PDF