Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cardiac fibroblasts (CFs) are activated into cardiac myofibroblasts (CMFs) in myocardial infarction (MI) and promote fibrosis, playing a crucial role in deteriorating cardiac function and inducing fatal arrhythmias. Transplantation of bone marrow mesenchymal stem cells (BMSCs) has emerged as a promising therapeutic approach for ischemic heart diseases, including MI. Recent studies have indicated that BMSCs can modulate the survival, differentiation, and antifibrotic activity of CFs. Kruppel-like factor 5 (KLF5) is a significant transcription factor involved in maintaining stem cell properties. In this study, we aimed to investigate whether overexpression of KLF5 could enhance the cardioprotective characteristics of BMSCs, particularly in terms of mitigating structural and electrical remodeling. Our in vivo experiments revealed that transplantation of KLF5-overexpressing BMSCs in mice with MI led to a substantial reduction in ventricular fibrosis and the occurrence of ventricular arrhythmias (VAs). In vitro coculture experiments demonstrated that BMSCs could inhibit CFs activation and cytoskeleton protein bundling induced by hypoxia through paracrine effects, resulting in reduced expression of α-SMA and Collagen I. Furthermore, coculturing BMSCs significantly reduced the expression of connexin 43, alleviated hypoxia, increased the expression of inward-rectifier K current (Kir), and decreased voltage-dependent K (Kv) currents. Mechanistically, KLF5 enhanced the effects of BMSCs by facilitating the transfer of miR-152-3 p from BMSCs-derived exosomes to CFs. Overall, our findings show that BMSCs transplantation promotes the recovery of cardiac function and reduces the incidence of arrhythmias by inhibiting CFs activation and modulating CFs Kir current remodeling. Additionally, overexpression of KLF5 enhances the cardioprotective effects of BMSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357777 | PMC |
http://dx.doi.org/10.1155/sci/5572221 | DOI Listing |