Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Periodontitis is a common inflammatory disease affecting the tissues surrounding and supporting the teeth, ultimately leading to tooth loss if left untreated. This study aimed to investigate the diagnostic potential of lipid metabolism-related genes (LMRGs) and characterize the immune microenvironment landscape in periodontitis. Differential expression analysis identified differentially expressed LMRGs (DELMRGs), followed by functional enrichment analyses to elucidate their biological functions. Hub DELMRGs were identified using Random Forest, least absolute shrinkage and selection operator (LASSO) regression, and XGBoost. The diagnostic performance of these genes was assessed using receiver operating characteristic (ROC) curves. Immune cell infiltration and immune function status were analyzed using ImmuCellAI and Gene Set Variation Analysis (GSVA), respectively. Single-cell RNA sequencing (scRNA-seq) was employed to decode the immune microenvironment and cell communication networks at single-cell resolution in periodontitis. Machine learning approaches revealed five hub LMRGs: FABP4, CWH43, CLN8, ADGRF5, and OSBPL6. ADGRF5 and FABP4 were significantly upregulated in periodontitis samples, while CWH43, CLN8, and OSBPL6 were downregulated. The combined LMRGs score exhibited excellent diagnostic performance with an area under the curve (AUC) of 0.954. Immune cell infiltration analysis unveiled significant positive correlations between LMRGs score and various T cell subsets in periodontitis. GSVA indicated activation of antigen presentation processes and multiple immune-related pathways in periodontitis. scRNA-seq delineated eight distinct cell types, with key LMRGs differentially expressed across cell types. Cell communication analysis highlighted significant interactions mediated by MHC-II, CXCL, and ADGRE5 signaling pathways. Monocytes and multipotent progenitor cells (MPPs) primarily contributed to the inflammatory response. Further analysis of monocyte heterogeneity identified five monocyte clusters with distinct roles, including immune and inflammatory response activation and pathways related to cell proliferation and metabolism.In summary, the integrated LMRGs score, which reflects lipid metabolism's role, represents a promising diagnostic biomarker for periodontitis. Additionally, detailed immune cell infiltration and single-cell analyses underscored the critical role of the immune microenvironment in periodontitis pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357905PMC
http://dx.doi.org/10.1038/s41598-025-15330-zDOI Listing

Publication Analysis

Top Keywords

immune microenvironment
16
immune cell
12
cell infiltration
12
lmrgs score
12
immune
9
periodontitis
9
cell
9
microenvironment periodontitis
8
machine learning
8
differentially expressed
8

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

The therapeutic effects of various tonic traditional Chinese medicines on demyelinating diseases.

Metab Brain Dis

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.

Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.

View Article and Find Full Text PDF

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF