A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimizing multilevel interactions of paper straws using modified cellulose nanocrystal-based coatings to enhance PLA crystallization and microplastic capture efficiency. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Disposable plastics make up 80 % of marine waste, threatening aquatic ecosystems. Over time, these plastics decompose into harmful microplastics (MPs), which can potentially enter the human body. This study presents a novel PLA-CO coating (where 'x' represents the concentration of cellulose nanocrystals and organically modified montmorillonite (CNC-OMMT)), designed to enhance the performance of paper straws by mimicking Chinese candle dip molding. Incorporating CNC-OMMT encourages crystallization through interface-induced dynamics and multi-level interactions within the PLA structure. At the same time, the strong layer-by-layer interactions between the paper fiber network and the PLA-CO composite have led to an impressive tensile strength of up to 48 MPa. The water absorption rate after 120 min is only 4.4 %, and the migration rate in various beverage simulants remains within the standard limit. Notably, the PLA-CO composite straws exhibited a degradation rate of 50.7 % in soil within three months. Additionally, the discarded straws effectively captured polystyrene microplastics (PS MPs) in water through physical entrapment and chemical adsorption, demonstrating a stable and efficient capture efficiency of 45.8 % over 12 h, thereby achieving sustainable waste management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.123994DOI Listing

Publication Analysis

Top Keywords

interactions paper
8
paper straws
8
capture efficiency
8
microplastics mps
8
pla-co composite
8
optimizing multilevel
4
multilevel interactions
4
straws
4
straws modified
4
modified cellulose
4

Similar Publications