98%
921
2 minutes
20
The invasion of human embryos in the uterus overcoming the maternal tissue barrier is a crucial step in embryo implantation and subsequent development. Although tissue invasion is fundamentally a mechanical process, most studies have focused on the biochemical and genetic aspects of implantation. Here, we fill the gap by using a deformable ex vivo platform to visualize traction during human embryo implantation. We demonstrate that embryos apply forces remodeling the matrix with species-specific displacement amplitudes and distinct radial patterns: principal displacement directions for mouse embryos, expanding on the surface while human embryos insert in the matrix generating multiple traction foci. Implantation-impaired human embryos showed reduced displacement, as well as mouse embryos with inhibited integrin-mediated force transmission. External mechanical cues induced a mechanosensitive response, human embryos recruited myosin, and directed cell protrusions, while mouse embryos oriented their implantation or body axis toward the external cue. These findings underscore the role of mechanical forces in driving species-specific invasion patterns during embryo implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356271 | PMC |
http://dx.doi.org/10.1126/sciadv.adr5199 | DOI Listing |
Sci Rep
September 2025
Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Aichi, Japan.
During early pregnancy in mice, leukemia inhibitory factor (LIF) regulates embryo implantation by activating the JAK/STAT3 signaling pathway. The STAT3 pathway has been recognized to play a critical role in embryo implantation; however, it remains unclear whether STAT3 activation alone is sufficient to induce implantation. In this study, we investigated the effects of RO8191, a potential STAT3 activator, on embryo implantation through a series of studies with different mouse models.
View Article and Find Full Text PDFCommun Biol
September 2025
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China. Electronic address:
Objective: Long-term administration of dexamethasone (DEX) to treat severe inflammation or autoimmune disorders often result in skeletal muscle atrophy and functional decline. Exosomes facilitate intercellular communication by transferring bioactive molecules, reflecting the characteristics of their tissue of origin. Myostatin-knockout (MSTN) mice exhibit muscle hypertrophy, and their muscle-derived exosomes (KO-EXOs) retain this phenotype.
View Article and Find Full Text PDFReproduction
October 2025
Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.
In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.
Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.
STAR Protoc
September 2025
Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA. Electronic address:
Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.
View Article and Find Full Text PDF