Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The FDA approval of T cell receptor-engineered T cells (TCR-T) for synovial sarcoma demonstrates the potential for adoptive T cell therapies (ACTs) in solid tumors. However, the paucity of tumor-associated targets without expression in normal tissues remains a major bottleneck, especially in rare cancer subtypes.

Methods: We developed a comprehensive computational pipeline called SCAN-ACT that leverages single-cell RNA sequencing and multi-omics data from tumor and normal tissues to nominate and prioritize putative targets for both chimeric antigen receptor (CAR)- and TCR-T cells. For surface membrane targets, SCAN-ACT proposes monospecific targets and potential target pairs for bispecific Boolean logic-gated CAR T cells. For peptide-MHC targets, SCAN-ACT proposes intracellular peptides bound to a diverse set of human leukocyte antigens. Selected targets were validated experimentally by protein expression and for peptide-MHC binding.

Results: We applied the SCAN-ACT pipeline to soft tissue sarcoma (STS), analyzing 986,749 single cells to identify and prioritize 395 monospecific CAR-T targets, 14,192 bispecific CAR-T targets, and 5020 peptide-MHC targets for TCR-T cells. Proposed targets and target pairs reflected the mesenchymal, neuronal, and hematopoietic ontogeny of STS. We further validated SCAN-ACT in glioblastoma revealing its versatility.

Conclusions: This work provides a robust data repository along with a web-based and user-friendly set of analysis tools to accelerate ACT development for solid tumors ( https://scanact.stanford.edu/ ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351953PMC
http://dx.doi.org/10.1186/s13073-025-01514-9DOI Listing

Publication Analysis

Top Keywords

targets
10
adoptive cell
8
solid tumors
8
normal tissues
8
tcr-t cells
8
targets scan-act
8
scan-act proposes
8
target pairs
8
peptide-mhc targets
8
car-t targets
8

Similar Publications

Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods.

View Article and Find Full Text PDF

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Theoretical approaches can help to plan, guide, and evaluate implementation projects that target real-world practice problems. This paper provides an overview of the integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework and summarizes its use in nutrition and dietetics research and practice. A narrative summary of its use was compiled from the published literature based on citations from two key reference sources of the i-PARIHS framework.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF