98%
921
2 minutes
20
Many plant lncRNAs regulate gene expression by binding to chromatin, but how they are retained at the target loci is unclear. We identify a chromatin-localized lncRNA - MUSHER, which activates two parallel regulatory pathways to increase Arabidopsis seed dormancy. MUSHER is upregulated in response to high temperatures, contributing to the induction of secondary dormancy. It promotes DOG1 expression by recruitment of the CPSF complex to enhance the proximal cleavage and polyadenylation at the DOG1 transcript. It also increases ABA sensitivity in seeds by activating PIR1 gene transcription. These genes, located on different chromosomes, are both bound by MUSHER, despite lacking sequence homology. The chromatin association of MUSHER enables the integration of the DOG1- and ABA pathways to adjust seed germination timing. Additionally, MUSHER and other lncRNAs interact with U1 snRNP, which is required for their chromatin localisation, revealing a role for U1 snRNP in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354759 | PMC |
http://dx.doi.org/10.1038/s41467-025-62991-5 | DOI Listing |
DNA demethylation is essential for gene activation and is primarily mediated by the Ten-Eleven-Translocation (TET) dioxygenase family. TET initiates the demethylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), a chemically stable derivative that is not only an intermediate in demethylation but also an epigenetic mark. 5hmC is enriched at active gene bodies, promoters, and enhancers that exist at accessible chromatin.
View Article and Find Full Text PDFTranslocation renal cell carcinoma (tRCC) is an aggressive kidney cancer driven by gene fusions of the transcription factor. is essential in tRCC but dispensable in normal cells, presenting an attractive but pharmacologically challenging therapeutic target. We show that the basic helix-loop-helix (bHLH) domain of TFE3 is crucial for chromatin binding and transcriptional function.
View Article and Find Full Text PDFCommun Biol
August 2025
Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
Nuclear lipid microdomains rich in sphingomyelin and cholesterol content regulate double-stranded exonuclease-resistant RNA. The study aimed to elucidate the importance of nuclear lipid microdomains in safeguarding nuclear RNA from digestion and to scrutinize all RNA present. Thus, we investigated the impact of sphingomyelinase on nuclear lipid microdomain RNA and conducted RNA extraction, library preparation, and sequencing.
View Article and Find Full Text PDFBioinform Biol Insights
August 2025
Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
The polymerase chain reaction (PCR) amplification process of deoxyribonucleic acid (DNA) libraries can introduce bias in the sequence ratios. Consequently, several recent genomic and transcriptomic methods employing next-generation sequencing (NGS) utilize transcription (IVT) to amplify template polynucleotide chains. IVT amplifies nucleic acid sequences linearly, making it less susceptible to bias than the exponential amplification of PCR.
View Article and Find Full Text PDFGenes (Basel)
August 2025
Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA.
For 40 years, Intron Retention (IR) was dismissed as splicing noise and is now recognized as a dynamic and evolutionarily conserved mechanism of post-transcriptional gene regulation. Unlike canonical splicing, which excises all introns from pre-mRNAs, IR selectively retains intronic sequences, albeit at seemingly random places; however, current research now reveals that this process is strategic in its retention. IR influences mRNA stability, localization, and translational potential.
View Article and Find Full Text PDF