A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Radiomics-based machine-learning method to predict extrahepatic metastasis in hepatocellular carcinoma after hepatectomy: a multicenter study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the use of CT-based radiomics for predicting extrahepatic metastasis in hepatocellular carcinoma (HCC) following hepatectomy. We analyzed data from 374 patients from two centers (277 in the training cohort and 97 in an external validation cohort). Radiomic features were extracted from contrast-enhanced CT scans. Key features were identified using the least absolute shrinkage and selection operator (LASSO) to compute radiomics scores (radscore) for model development. A clinical model based on risk factors was also created. We developed a combined model integrating both radscore and clinical variables, constructing nomograms for personalized risk assessment. Model performance was compared via the Delong test, with calibration curves assessing prediction consistency. Decision curve analysis (DCA) was employed to assess the clinical utility and net benefit of the predictive models across different threshold probabilities, thereby evaluating their potential value in guiding clinical decision-making for extrahepatic metastasis. Radscore based on CT was an independent predictor of extrahepatic disease (p < 0.05). The combined model showed high predictive performance with an AUC of 87.2% (95% CI: 81.8%-92.6%) in the training group and 86.0% (95% CI: 69.4%-100%) in the validation group. Predictive performance of the combined model significantly outperformed both the radiomics and clinical models (p < 0.05). The DCA shows that the combined model has a higher net benefit in predicting extrahepatic metastases of HCC than the clinical model and radiomics model. The combined prediction model, utilizing CT radscore alongside clinical risk factors, effectively forecasts extrahepatic metastasis in HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354724PMC
http://dx.doi.org/10.1038/s41598-025-15406-wDOI Listing

Publication Analysis

Top Keywords

extrahepatic metastasis
12
metastasis hepatocellular
8
hepatocellular carcinoma
8
radiomics-based machine-learning
4
machine-learning method
4
method predict
4
extrahepatic
4
predict extrahepatic
4
carcinoma hepatectomy
4
hepatectomy multicenter
4

Similar Publications