98%
921
2 minutes
20
Excitability is a neuronal property quantified as the magnitude of neural response to stimuli. It plays a crucial role in information processing and is disrupted in various neuropsychiatric conditions. In humans, non-invasive measurements of brain excitability have been mostly limited to the primary motor cortex. Here, the response to Transcranial Magnetic Stimulation (TMS) is quantified as the magnitude of the muscular contraction. TMS mapping of brain excitability outside the motor cortex, simultaneously across brain areas, and in deep regions is challenging. Indeed, TMS has little depth penetration, and can only probe one cortical point at a time. Furthermore, the measurement of the responses to stimuli outside the motor cortex requires simultaneous neuroimaging, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Possible solutions include the application of stimulation approaches alternative to TMS, and the investigation of resting state properties of electromagnetic and hemodynamic brain activity. We show that, in combination with TMS or alone, neuroimaging will progressively allow non-invasive and accurate mapping of excitability with high spatio-temporal resolution, across the entire brain, and non-invasively. This will mark a critical advancement for stimulation thresholding in basic neuroscience and clinical medicine, as well as diagnostics of deviant excitability patterns in neuropsychiatric conditions. It is the aim of this review to critically discuss the state-of-the-art of whole brain excitability mapping and provide an outlook on neuroscience and clinical implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2025.106338 | DOI Listing |
Commun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDFCereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurosurgery, Paracelsus Medical University, Breslauer Straße 201, 90471, Nuremberg, Bavaria, Germany.
Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDF