Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Myasthenia Gravis (MG) is an autoimmune disease characterized by the production of autoantibodies against neuromuscular junctions, leading to varying degrees of severity and outcomes among patients. This variability makes clinical evaluation crucial for determining appropriate treatment targets. However, accurately assessing Minimal Manifestation (MM) status is challenging, requiring expertise in MG management. Therefore, this study aims to develop a diagnostic model for MM in MG patients by leveraging their clinical scores and machine learning approaches.

Methods: This study included 1,603 MG patients enrolled from the Japan MG Registry in the 2021 survey. We employed non-negative matrix factorization to decompose three MG clinical scores (MG composite score, MGADL scale, and MG quality of life (QOL) 15r) into four distinct modules: Diplopia, Ptosis, Systemic symptoms, and QOL. We developed a machine learning model with the four modules to predict MM or better status in MG patients. Using 414 registrants from the Japan MG Registry in the 2015 survey, we validated the model's performance using various metrics, including area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, accuracy, F1 score, and Matthews Correlation Coefficient (MCC).

Results: The ensemble model achieved an AUROC of 0.94 (95% CI: 0.94-0.94), accuracy of 0.87 (95% CI: 0.86-0.88), sensitivity of 0.85 (95% CI: 0.85-0.86), specificity of 0.89 (95% CI: 0.88-0.91), precision of 0.93 (95% CI: 0.92-0.94), F1 score of 0.89 (95% CI: 0.88-0.89), and MCC of 0.74 (95% CI: 0.72-0.75) on the validation dataset.

Conclusions: The developed MM diagnostic model can effectively predict MM or better status in MG patients, potentially guiding clinicians in determining treatment objectives and evaluating treatment outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352761PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330044PLOS

Publication Analysis

Top Keywords

machine learning
12
myasthenia gravis
8
diagnostic model
8
clinical scores
8
japan registry
8
predict better
8
better status
8
status patients
8
089 95%
8
95%
7

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF