98%
921
2 minutes
20
With the development of the Internet of Things and intelligent robots, there is an increasing demand for distributed flexible sensor networks and portable power devices. As a self-powered sensor and micro/nano powering supplier, triboelectric nanogenerator (TENG) that can convert the irregular and ubiquitous mechanical energy into electrical energy demonstrates promising applications in human-machine interaction, soft robotics, wearable healthcare, etc. However, achieving ultrahigh current density and water resistance in TENGs remains challenging, mainly due to the non-utilization of the electrons in the interior of triboelectric layers. Herein, it is proposed that linking the electron cloud potential wells (ECPWs) of triboelectric materials can lead to a huge increase in the output current of TENGs. This hypothesis is verified by embedding a conductive network of reduced graphene oxide (rGO) into the triboelectric layers of ethyl cellulose (EC) and polydimethylsiloxane (PDMS). The TENG based on this model demonstrates a record-high current density of ≈3533 mA m among the TENGs working in contact-separation mode. In addition, this TENG shows excellent endurance in high-humidity and even rainy environments. This work provides a novel and promising strategy for fabricating TENGs with ultrahigh output current and water resistance, largely expanding their practical applications in many fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202508689 | DOI Listing |
Tissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.
Harlequin syndrome, also known as differential hypoxia (DH) or North-South syndrome, is a serious complication of femoro-femoral venoarterial extracorporeal membrane oxygenation (V-A ECMO). Moreover, Harlequin syndrome is caused by competing flows between the retrograde oxygenated ECMO output and the anterograde ejection of poorly oxygenated blood from the native heart. In the setting of impaired pulmonary gas exchange, the addition of an Impella device (ECPELLA configuration), although beneficial for ventricular unloading and hemodynamic support, may further exacerbate this competition and precipitate DH.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Ecotoxicol Environ Saf
September 2025
Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, PR China. Electronic address:
Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.
View Article and Find Full Text PDF