Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant galls are abnormal growing tissues induced by various parasitic organisms, exhibiting diverse and complex morphologies. Typically, these galls differ significantly in appearance from their host plants. Here, we report that larvae of a parasitic fly generate unique, rosette galls on Aster scaber, a perennial herb. These galls develop from vegetative organs after the larvae reprogram floral gene expression. To investigate the underlying mechanisms, we conducted whole-genome sequencing and transcriptome analysis. Our findings reveal that the larvae induce host organ dedifferentiation into an amorphous callus, activate floral genes, and selectively suppress genes associated with carpel development. As a result, the pseudoflowers consist solely of tepal-like leaflets and a specialized chamber, and the larvae influence pigment biosynthesis. Hijacking plants developmental gene networks by insects to sequentially mediate dedifferentiation, cytokinin regulation, and tepal-like leaflets formation provides a framework to study highly elaborate forms of parasitism and symbiosis between plants and insects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.70127DOI Listing

Publication Analysis

Top Keywords

vegetative organs
8
aster scaber
8
tepal-like leaflets
8
dasineura asteriae
4
asteriae reprograms
4
reprograms flower
4
flower gene
4
gene expressions
4
expressions vegetative
4
organs create
4

Similar Publications

Analysis of essential genes in by CRISPRi and Tn-seq.

J Bacteriol

September 2025

Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Essential genes are interesting in their own right and as potential antibiotic targets. To date, only one report has identified essential genes on a genome-wide scale in , a problematic pathogen for which treatment options are limited. That foundational study used large-scale transposon mutagenesis to identify 404 protein-encoding genes as likely to be essential for vegetative growth of the epidemic strain R20291.

View Article and Find Full Text PDF

The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.

View Article and Find Full Text PDF

While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.

View Article and Find Full Text PDF

The plant life cycle progresses through distinct phases defined by the morphology of the organs formed on the shoot. In Arabidopsis, age-dependent reduction in the related microRNAs miR156 and miR157 controls transitions from juvenile to adult vegetative phase and from adult to reproductive phase. However, whether these miRNA isoforms have specific contributions remains unclear.

View Article and Find Full Text PDF

Genome-Wide Analysis of the Maize LBD Gene Family Reveals a Role for in the Development of Lateral Roots.

Plants (Basel)

August 2025

Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.

The growth and yield of the aboveground parts of maize ( L.) are closely associated with development of the root system. LBD (Lateral Organ Boundaries Domain) transcription factors are crucial for the regulation of lateral organ development in plants.

View Article and Find Full Text PDF