Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lymphoma is one of the most common malignancies globally, making early diagnosis crucial for improving survival. This study introduces an electrochemical-assisted scattering imaging system (ESIS) for lymphoma cell classification. The system integrates scattering imaging with electrochemical measurements, using a fiber-optic probe for scattering excitation and a 3D rGO-TiC-MWCNTs composite electrode to simultaneously monitor HO release. Data from these modalities are combined with an SVM algorithm, improving classification performance significantly, with the AUC for HMy2.CIR cells increased from 0.79 to 0.97. The dual-modality approach achieved 90% accuracy, outperforming scattering imaging alone. This method enhances lymphoma subtype differentiation and shows promise for personalized cancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339310 | PMC |
http://dx.doi.org/10.1364/BOE.569911 | DOI Listing |