m6A modification in R-loop homeostasis: a potential target for cancer therapeutics.

NAR Cancer

Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

R-loops or DNA-RNA hybrids are prominent nucleic acid structures that commonly arise during transcription. These structures play important biological functions, such as regulating gene expression and DNA repair. However, when unresolved by nucleic acid processing factors, pathological R-loops can be harmful and lead to genome instability. -Methyladenosine (m6A), the most prevalent modification in messenger RNA, has been recently identified to be crucial for regulating R-loop balance and maintaining genome stability. Strikingly, m6A-modified R-loop formation can have opposing consequences, either stabilization or resolution, depending on the biological context. In this review, we discuss the current knowledge of the regulatory roles of m6A on R-loops across various processes, including gene transcription, DNA repair, and centromere and telomere stability. Additionally, we explore other m6A-mediated processes, such as nascent transcription and chromatin landscape, that potentially affect R-loop dynamics. Finally, we discuss the current limitations and future directions of studying the m6A-R-loop axis, as well as the opportunities to target this pathway as a potential therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342906PMC
http://dx.doi.org/10.1093/narcan/zcaf022DOI Listing

Publication Analysis

Top Keywords

nucleic acid
8
dna repair
8
discuss current
8
m6a modification
4
r-loop
4
modification r-loop
4
r-loop homeostasis
4
homeostasis potential
4
potential target
4
target cancer
4

Similar Publications

Objective: Dipeptidyl peptidase 9 (DPP9) not only regulates tumor progression and drug sensitivity, but also modifies oxidative stress mediated ferroptosis. This study aimed to investigate the effect of DPP9 inhibition on sorafenib sensitivity and its interaction with ferroptosis in hepatocellular carcinoma (HCC).

Methods: Two HCC cell lines (Huh7 and MHCC-97H) were transfected with DPP9 siRNA, followed by detection of reactive oxygen species (ROS), ferrous iron (Fe), malondialdehyde (MDA), and ferroptosis-related proteins, and treated by 0-16 μM sorafenib to calculate half-maximal inhibitory concentration (IC) for sensitivity assessment.

View Article and Find Full Text PDF

If iPS cells can be established easily and efficiently using freshly collected blood cells, it will enhance regenerative and personalized medicine. While reports of iPS derivation from blood-derived endothelial progenitor cells using RNA have been documented, none have been reported from peripheral blood-derived mononuclear cells (PBMCs). In this study, we established a method to generate iPS cells from PBMCs using synthetic RNAs and found that MDM4, which suppresses p53, improved reprogramming efficiency.

View Article and Find Full Text PDF

Asymmetric volume-mediated buffer control overcomes sensitivity limits in one-pot RAA-CRISPR/Cas12a visual detection.

Anal Bioanal Chem

September 2025

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China.

Rapid, low-cost, and visual nucleic acid detection methods are highly attractive for curbing colistin resistance spread through the food chain. CRISPR/Cas12a combined with recombinase-aided amplification (RAA) offers a one-pot, aerosol-free approach for visual detection. However, traditional one-pot systems often run Cas12a trans-cleavage in a buffer suitable for RAA, thus limiting Cas12a cleavage efficiency.

View Article and Find Full Text PDF