A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigation of the Reinforcement Mechanism and Impact Resistance of Carbon Hollow Microsphere-Reinforced PDMS Composites. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For meeting the growing demand for lightweight impact-resistant materials, this study designed and fabricated a carbon hollow microsphere (CHM)-reinforced polydimethylsiloxane (PDMS) composite and systematically investigated the influence of CHM packing structure on its energy absorption performance. Through optimizing the controllable preparation processes of the CHMs, CHMs with low breaking rates and novel structural stability were successfully prepared. A vacuum-assisted mixing-casting method was employed to synthesize the CHM/PDMS composites with varying CHM contents (0~10 wt.%). The results demonstrated that the incorporation of CHMs significantly enhanced the compressive strength, compressive modulus, and energy absorption efficiency of the PDMS matrix. Under quasi-static loading, the composite with 4 wt.% CHM exhibited optimal comprehensive performance, achieving a 124.68% increase in compressive strength compared to pure PDMS. In dynamic impact tests, the compressive strength and energy absorption at a strain rate of 4500 s increased by 1245.09% and 1218.32%, respectively. The improvement of mechanical properties can be mainly attributed to the introduction of CHMs with an appropriate percentage, which can form a dense stacking structure so that the interaction force between the CHMs and PDMS matrix can be improved through the dense stacking effect, and the external force can be effectively dissipated through interface interaction, in addition to the energy dissipated by the deformation of the matrix deformation and crush of the CHMs. Additionally, the introduction of CHMs elevated the onset thermal decomposition temperature of the materials, leading to an enhanced thermal stability of the CHM/PDMS composite compared to that of the pure PDMS. Overall, this study provides theoretical and experimental foundations for designing lightweight impact-resistant materials and demonstrates the potential of CHM/PDMS composites for multifunctional safety protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349524PMC
http://dx.doi.org/10.3390/polym17152087DOI Listing

Publication Analysis

Top Keywords

energy absorption
12
compressive strength
12
carbon hollow
8
lightweight impact-resistant
8
impact-resistant materials
8
chm/pdms composites
8
pdms matrix
8
compared pure
8
pure pdms
8
introduction chms
8

Similar Publications