98%
921
2 minutes
20
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was loaded with constant stress for 5 h, and a recovery phase with no applied stress was observed. Another group of samples was loaded for 20 h without an additional deformation recovery phase. The continuous constant stress application results on the sample were analysed, and an overall effect of anisotropy on the samples was observed. Several models describing viscoelastic deformation were considered to adhere to experimental data, with the Prony series and general cubic theory models used in the final analysis. The models could describe experimental results up to 50% and 70% of sample strength, respectively. The analysis confirmed the nonlinear behaviour of printed samples under constant stress and the significant effect of anisotropy introduced by the 3D printing process on the material's elastic properties. The viscoelastic properties in both directions were described using the same parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349189 | PMC |
http://dx.doi.org/10.3390/polym17152075 | DOI Listing |
PLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.
The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Evolutionary Ecology and Infection Biology, Lund University, SE-223 62, Lund, Sweden.
Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Pulmonary and Critical Care Division, University of Florida, Gainesville, FL.
The increased workload and constant fear for life can cause significant stress and depression among healthcare workers (HCWs). The aim of this study was to measure psychological stress, depression, and their causes in HCWs who practiced in the Gaza strip since the 2023 Israel-Gaza war. We conducted a cross-sectional survey between April 2024 and January 2025 for Palestinian and international HCWs who practiced in the Gaza strip after October 7, 2023.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDF