Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using Photoplethysmogram (PPG) signals for identity recognition has been proven effective in biometric authentication. However, in real-world applications, PPG signals are prone to interference from noise, physical activity, diseases, and other factors, making it challenging to ensure accurate user recognition and verification in complex environments. To address these issues, this paper proposes an improved MSF-SE ResNet50 (Multi-Scale Feature Squeeze-and-Excitation ResNet50) model based on 2D PPG signals. Unlike most existing methods that directly process one-dimensional PPG signals, this paper adopts a novel approach based on two-dimensional PPG signal processing. By applying Continuous Wavelet Transform (CWT), the preprocessed one-dimensional PPG signal is transformed into a two-dimensional time-frequency map, which not only preserves the time-frequency characteristics of the signal but also provides richer spatial information. During the feature extraction process, the SENet module is first introduced to enhance the ability to extract distinctive features. Next, a novel Lightweight Multi-Scale Feature Fusion (LMSFF) module is proposed, which addresses the limitation of single-scale feature extraction in existing methods by employing parallel multi-scale convolutional operations. Finally, cross-stage feature fusion is implemented, overcoming the limitations of traditional feature fusion methods. These techniques work synergistically to improve the model's performance. On the BIDMC dataset, the MSF-SE ResNet50 model achieved accuracy, precision, recall, and F1 scores of 98.41%, 98.19%, 98.27%, and 98.23%, respectively. Compared to existing state-of-the-art methods, the proposed model demonstrates significant improvements across all evaluation metrics, highlighting its significance in terms of network architecture and performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349239PMC
http://dx.doi.org/10.3390/s25154849DOI Listing

Publication Analysis

Top Keywords

feature fusion
16
ppg signals
16
multi-scale feature
12
msf-se resnet50
8
resnet50 model
8
existing methods
8
one-dimensional ppg
8
ppg signal
8
feature extraction
8
feature
7

Similar Publications

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Rapid and sensitive acute leukemia classification and diagnosis platform using deep learning-assisted SERS detection.

Cell Rep Med

August 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Mole

Rapid identification and accurate diagnosis are critical for individuals with acute leukemia (AL). Here, we propose a combined deep learning and surface-enhanced Raman scattering (DL-SERS) classification strategy to achieve rapid and sensitive identification of AL with various subtypes and genetic abnormalities. More than 390 of cerebrospinal fluid (CSF) samples are collected as targets, encompassing healthy control, AL patients, and individuals with other diseases.

View Article and Find Full Text PDF

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF