A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Finite Element Model Updating for a Continuous Beam-Arch Composite Bridge Based on the RSM and a Nutcracker Optimization Algorithm. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate finite element (FE) models are essential for the safety assessment of civil engineering structures. However, obtaining reliable model parameters for existing bridges remains challenging due to the inability to conduct static load tests without disrupting traffic flow. To address this, this study proposes an FE model updating framework that integrates the response surface method and the nutcracker optimization algorithm (NOA). This framework is characterized by the incorporation of ambient vibration data into parameter optimization, thereby enhancing model accuracy. The stochastic subspace identification method is first adopted to extract the bridge's natural frequencies from vibration data. The response surface method is then employed to construct a response surface function that approximates the FE model. The NOA is subsequently applied to iteratively optimize this response surface function, ensuring rapid convergence and the precise adjustment of the FE model parameter. To validate the effectiveness of the proposed framework, a continuous beam-arch composite bridge with a span of 204.783 m was selected as a case study. The results indicate that the proposed method reduced the average frequency error from 5.58% to 2.75% by updating the model parameters. While the whale optimization algorithm required 21 iterations and the grey wolf optimizer needed 41 iterations to converge near the minimum, the NOA achieved this in merely 13 iterations, demonstrating the NOA's superior convergence speed. Furthermore, the NOA significantly outperformed both the whale optimization algorithm and the grey wolf optimizer in reducing the error of the first transverse vibration frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349117PMC
http://dx.doi.org/10.3390/s25154831DOI Listing

Publication Analysis

Top Keywords

optimization algorithm
16
response surface
16
finite element
8
model updating
8
continuous beam-arch
8
beam-arch composite
8
composite bridge
8
nutcracker optimization
8
model parameters
8
surface method
8

Similar Publications