Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain consumption becomes increasingly time-sensitive and dynamic, traditional approaches face growing limitations. In recent years, emerging techniques-particularly molecular-based vibrational spectroscopy methods such as visible-near-infrared (Vis-NIR), near-infrared (NIR), Raman, mid-infrared (MIR) spectroscopy, and hyperspectral imaging (HSI)-have been applied to assess fungal contamination in grains and their products. This review summarizes research advances and applications of vibrational spectroscopy in detecting mycotoxins in grains from 2019 to 2025. The fundamentals of their work, information acquisition characteristics and their applicability in food matrices were outlined. The findings indicate that vibrational spectroscopy techniques can serve as valuable tools for identifying fungal contamination risks during the production, transportation, and storage of grains and related products, with each technique suited to specific applications. Given the close link between grain-based foods and humans, future efforts should further enhance the practicality of vibrational spectroscopy by simultaneously optimizing spectral analysis strategies across multiple aspects, including chemometrics, model transfer, and data-driven artificial intelligence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346599PMC
http://dx.doi.org/10.3390/foods14152688DOI Listing

Publication Analysis

Top Keywords

vibrational spectroscopy
20
fungal contamination
8
grains products
8
spectroscopy
6
vibrational
5
grains
5
progress detection
4
detection mycotoxins
4
mycotoxins cereals
4
cereals products
4

Similar Publications

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF

The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.

View Article and Find Full Text PDF

High-Pressure Synthesis and Characterization of the Novel Potassium Superhydride KH.

J Phys Chem Lett

September 2025

Center for Science at Extreme Conditions (CSEC) and the School of Physics and Astronomy, The University of Edinburgh, EH9 3JZ Edinburgh, United Kingdom.

Through high-pressure diamond anvil cell experiments, we report the synthesis of two novel potassium superhydrides (KH-I and KH-II) and investigate their structural and vibrational properties via synchrotron X-ray powder diffraction and Raman spectroscopy, complemented by density functional theory (DFT) calculations. Above 17 GPa at room temperature, KH-II and H react to form KH-I; this reaction can be accelerated with temperature. KH-I possesses a face-centered-cubic () potassium sublattice with a slight rhombohedral distortion (space group 3̅).

View Article and Find Full Text PDF

Infrared (IR) spectroscopic imaging combines the molecular specificity of vibrational spectroscopy with imaging capabilities of microscopy, potentially allowing for simultaneous quantitative observations of drugs and cellular response. However, accurately quantifying drug concentration within changing cells is complicated by the overlap between exogenous molecules' and native cellular spectra. Here, we address this challenge by developing a derivative of the widely used chemotherapeutic doxorubicin as a spectral bioprobe (DOX-IR) using a strongly absorbing metal-carbonyl moiety [(Cp)Fe(CO)].

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF