98%
921
2 minutes
20
Alcohol dependency is a complex and chronic condition that negatively impacts multiple organ systems, including the skin. A key pathological factor in this process is oxidative stress, leading to progressive cellular damage, chronic inflammation, and accelerated cutaneous aging. Alcohol metabolism generates reactive oxygen species (ROS), which overwhelm endogenous antioxidant defenses and contribute to a range of skin alterations, including nonspecific changes such as xerosis, erythema, and wrinkle formation, as well as inflammatory and neoplastic skin disorders. Additionally, alcohol-induced alterations of the skin microbiome may further exacerbate skin barrier dysfunction and inflammatory responses. This review explores the biochemical mechanisms and skin microbiome alterations linking alcohol-induced oxidative stress to skin damage and disease. Furthermore, it evaluates the therapeutic potential of antioxidant-based interventions, both natural and synthetic. Antioxidants may offer protective and regenerative effects by scavenging free radicals, modulating inflammatory responses, and enhancing skin barrier function. The paper aims to provide a comprehensive overview of the molecular and microbial interplay between alcohol, oxidative stress, and skin health, while identifying future directions for targeted antioxidant therapy in individuals with alcohol dependency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348600 | PMC |
http://dx.doi.org/10.3390/molecules30153111 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.
Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.
View Article and Find Full Text PDFNutr Metab Cardiovasc Dis
July 2025
Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, 10# Zhenhai Road, Xiamen, China. Electronic address:
Background And Aims: Adolescent hypertension is a growing public health concern, with oxidative stress emerging as a pivotal factor in its development. Oxidative Balance Score (OBS) consists of 20 components, including 16 nutrients (such as carotenoids, riboflavin, copper, etc.) and 4 lifestyle factors (physical activity, BMI, alcohol consumption, and smoking), with higher scores indicating increased exposure to antioxidants.
View Article and Find Full Text PDFInorg Chem
September 2025
ICMol, Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
The failure of the therapeutic administration of superoxide dismutase (SOD) and catalase (CAT) enzymes to prevent oxidative stress has fostered the development of metal complexes that are capable of mimicking their activity. In the present work, two new pyridine azacyclophane ligands capable of coordinating Cu and Fe to give rise to mimetics with high activities toward disproportionation of the superoxide anion or hydrogen peroxide, depending on the metal ion, have been prepared. Although the Cu complexes have some of the highest SOD activities reported to date, they are completely inactive toward HO disproportionation.
View Article and Find Full Text PDF