98%
921
2 minutes
20
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly common amid modern stressors and an ultra-processed food environment. This narrative review synthesizes interdisciplinary findings from nutritional psychiatry, microbiome science, and behavioral nutrition to explore how stress physiology, gut-brain interactions, and dietary quality shape emotional regulation and eating behavior. It highlights mechanisms (e.g., HPA-axis dysregulation, blunted interoception, and inflammatory and epigenetic pathways) and examines the evidence for mindful and intuitive eating; phytochemical-rich, whole-food dietary patterns; and the emerging role of precision nutrition. Trauma-informed approaches, cultural foodways, structural barriers to healthy eating, and clinical implementation strategies (e.g., interprofessional collaboration) are considered in the context of public health equity to support sustainable mental wellness through dietary interventions. Ultimately, restoring a healthy relationship with food positions nutrition not only as sustenance but as a modifiable regulator of affect, cognition, and stress resilience, central to mental and physical well-being.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348343 | PMC |
http://dx.doi.org/10.3390/nu17152466 | DOI Listing |
Elife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,
Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
September 2025
Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered.
View Article and Find Full Text PDFSaudi Dent J
September 2025
Oral Biology Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
To compare the efficacy of using bone marrow mesenchymal stem cell (BM-MSC) exosomes and injectable platelet rich fibrin (i-PRF) on the submandibular salivary glands (SMGs) of aged albino rats in restoring salivary gland structure and function. A total of 40 healthy male albino rats were used, two for obtaining the BM-MSCs, 10 for i-PRF preparation and seven adult rats (6-8 months old) represented the control group (Group 1). The remaining 21 rats were aged (18-20 months old) and divided into three groups of seven rats each; (Group 2): received no treatment, (Group 3): each rat received a single intraglandular injection of BM-MSC exosomes (50 μg/kg/dose suspended in 0.
View Article and Find Full Text PDFPsychol Res
September 2025
Neurorehabilitation Research Center, Kio University, Nara, Japan.
The ability to detect small errors between sensory prediction in the brain and actual sensory feedback is important in rehabilitation after brain injury, where motor function needs to be restored. To date in the recent study, a delayed visual error detection task during upper limb movement was used to measure this ability for healthy participants or patients. However, this ability during walking, which is the most sought-after in brain-injured patients, was unclear.
View Article and Find Full Text PDF