A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Wheat Soil-Borne Mosaic Virus Disease Detection: A Perspective of Agricultural Decision-Making via Spectral Clustering and Multi-Indicator Feedback. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid advancement of artificial intelligence is transforming agriculture by enabling data-driven plant disease monitoring and decision support. Soil-borne mosaic wheat virus (SBWMV) is a soil-transmitted virus disease that poses a serious threat to wheat production across multiple ecological zones. Due to the regional variability in environmental conditions and symptom expressions, accurately evaluating the severity of wheat soil-borne mosaic (WSBM) infections remains a persistent challenge. To address this, the problem is formulated as large-scale group decision-making process (LSGDM), where each planting plot is treated as an independent virtual decision maker, providing its own severity assessments. This modeling approach reflects the spatial heterogeneity of the disease and enables a structured mechanism to reconcile divergent evaluations. First, for each site, field observation of infection symptoms are recorded and represented using intuitionistic fuzzy numbers (IFNs) to capture uncertainty in detection. Second, a Bayesian graph convolutional networks model (Bayesian-GCN) is used to construct a spatial trust propagation mechanism, inferring missing trust values and preserving regional dependencies. Third, an enhanced spectral clustering method is employed to group plots with similar symptoms and assessment behaviors. Fourth, a feedback mechanism is introduced to iteratively adjust plot-level evaluations based on a set of defined agricultural decision indicators sets using a multi-granulation rough set (ADISs-MGRS). Once consensus is reached, final rankings of candidate plots are generated from indicators, providing an interpretable and evidence-based foundation for targeted prevention strategies. By using the WSBM dataset collected in 2017-2018 from Walla Walla Valley, Oregon/Washington State border, the United States of America, and performing data augmentation for validation, along with comparative experiments and sensitivity analysis, this study demonstrates that the AI-driven LSGDM model integrating enhanced spectral clustering and ADISs-MGRS feedback mechanisms outperforms traditional models in terms of consensus efficiency and decision robustness. This provides valuable support for multi-party decision making in complex agricultural contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348270PMC
http://dx.doi.org/10.3390/plants14152260DOI Listing

Publication Analysis

Top Keywords

soil-borne mosaic
12
spectral clustering
12
wheat soil-borne
8
virus disease
8
enhanced spectral
8
decision
5
wheat
4
mosaic virus
4
disease
4
disease detection
4

Similar Publications