98%
921
2 minutes
20
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFeO (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm, a minimal Tafel slope of 45.09 mV dec, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348916 | PMC |
http://dx.doi.org/10.3390/ma18153633 | DOI Listing |
J Mol Model
September 2025
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.
Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.
View Article and Find Full Text PDFInorg Chem
September 2025
Departmento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain.
[Cu(3-bph)(PABA)(HO)] () (3-bph = ,'-bis(3-pyridylmethylene)hydrazine and PABA = -amino benzoate) is a pyridyl-N bridging Cu coordination polymer, and PABA acts as a carboxylate-O donor forming a square pyramidal CuNO motif following a zigzag one-dimensional (1D) lattice. The shows weak antiferromagnetic coupling ( = -0.196(1) cm), and emission appears at 352 nm (λ = 293 nm), which is selectively quenched by Fe via the FRET mechanism.
View Article and Find Full Text PDFEur Radiol
September 2025
Department of Ultrasound, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
Objectives: To evaluate the predictive role of carotid stiffening, quantified using ultrafast pulse wave velocity (ufPWV), for assessing cardiovascular risk in young populations with no or elevated cardiovascular risk factors (CVRFs).
Materials And Methods: This study enrolled 180 young, apparently healthy individuals who underwent ufPWV measurements. They were classified into three groups: the CVRF-free group (n = 60), comprising current non-smokers with untreated blood pressure < 140/90 mmHg, fasting blood glucose (FBG) < 7.
Dalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Photomultiplication-type organic photodetectors (PM-type OPDs) have recently attracted attention. However, the development of polymer donors specifically tailored for this architecture has rarely been reported. In this study, we synthesized benzobisoxazole-based polymer donors incorporating alkylated π-spacers that simultaneously enhance photocurrent density () and suppress dark current density (), leading to high responsivity () and specific detectivity (*).
View Article and Find Full Text PDF