Bug Wars: Artificial Intelligence Strikes Back in Sepsis Management.

Diagnostics (Basel)

Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sepsis remains a leading global cause of mortality, with delayed recognition and empirical antibiotic overuse fueling poor outcomes and rising antimicrobial resistance. This systematic scoping review evaluates the current landscape of artificial intelligence (AI) and machine learning (ML) applications in sepsis care, focusing on early detection, personalized antibiotic management, and resistance forecasting. Literature from 2019 to 2025 was systematically reviewed following PRISMA-ScR guidelines. A total of 129 full-text articles were analyzed, with study quality assessed via the JBI and QUADAS-2 tools. AI-based models demonstrated robust predictive performance for early sepsis detection (AUROC 0.68-0.99), antibiotic stewardship, and resistance prediction. Notable tools, such as InSight and KI.SEP, leveraged multimodal clinical and biomarker data to provide actionable, real-time support and facilitate timely interventions. AI-driven platforms showed potential to reduce inappropriate antibiotic use and nephrotoxicity while optimizing outcomes. However, most models are limited by single-center data, variable interpretability, and insufficient real-world validation. Key challenges remain regarding data integration, algorithmic bias, and ethical implementation. Future research should prioritize multicenter validation, seamless integration with clinical workflows, and robust ethical frameworks to ensure safe, equitable, and effective adoption. AI and ML hold significant promise to transform sepsis management, but their clinical impact depends on transparent, validated, and user-centered deployment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345688PMC
http://dx.doi.org/10.3390/diagnostics15151890DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
sepsis management
8
sepsis
5
bug wars
4
wars artificial
4
intelligence strikes
4
strikes sepsis
4
management sepsis
4
sepsis remains
4
remains leading
4

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Correction: Consumer Data Is Key to Artificial Intelligence Value: Welcome to the Health Care Future.

J Particip Med

September 2025

Participatory Health, 20 Grasmere Ave, Fairfield, CT, 06824, United States, 1 (212) 280-1600.

View Article and Find Full Text PDF

Correction: Factors Affecting the Receptiveness of Chinese Internists and Surgeons Toward Artificial Intelligence-Driven Drug Prescription: Protocol for a Systematic Survey Study.

JMIR Res Protoc

September 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

[This corrects the article DOI: .].

View Article and Find Full Text PDF

Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.

View Article and Find Full Text PDF

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF