98%
921
2 minutes
20
Objectives: This study aimed to develop and validate a machine-learning (ML) model to predict iron deficiency without anaemia (IDWA) using routinely collected electronic health record (EHR) data. The primary hypothesis was that an ML model could achieve better accuracy in identifying low ferritin levels (<30 ng/mL) in non-anaemic patients compared with traditional methods.
Design: A retrospective cohort study.
Setting: Data were derived from secondary and tertiary care facilities within the eight-hospital Mount Sinai Health System, an urban academic health system.
Participants: The study included 211 486 adult patients (aged ≥18 years) with normal haemoglobin levels (≥130 g/L for men and ≥120 g/L for women) and recorded ferritin measurements.
Primary And Secondary Outcome Measures: The primary outcome was the prediction of low ferritin levels (<30 ng/mL) using extreme gradient-boosted decision trees, an ML algorithm suited for structured clinical data. Secondary outcomes included subgroup analyses stratified by sex and age to evaluate model performance in different populations.Data from 211 486 Mount Sinai Health System patients with normal haemoglobin levels and ferritin testing were analysed. The model used demographic data, blood count indices and chemistry results to identify low ferritin levels (<30 ng/mL).
Results: Of the 211 486 patients analysed, 19.56% (n=41 368) of the patients had low ferritin levels. In the low ferritin group, the mean age was 41.28 years with 89.64% females. In contrast, the normal ferritin group had a mean age of 50.14 years with 62.02% females. The model achieved an area under the curve (AUC) of 0.814. At a sensitivity threshold of 70%, the model had a specificity of 75.85%, with a positive predictive value of 37.6% and a negative predictive value of 92.41%. The model outperformed an alternative model based only on complete blood count indices (AUC 0.814 vs 0.741). Subgroup analysis showed that model accuracy varied by sex and age, with lower performance in premenopausal women (AUC 0.736) compared with postmenopausal women (AUC 0.793) and men (AUC of 0.832 in those under 60 years and 0.806 in those aged 60 and above).
Conclusions: The ML model provides an effective approach to screening for IDWA using readily available EHR data. Implementing this tool in clinical settings may facilitate early diagnosis of IDWA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352227 | PMC |
http://dx.doi.org/10.1136/bmjopen-2024-097016 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
JMIR Med Inform
September 2025
College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.
Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.
View Article and Find Full Text PDFJMIR AI
September 2025
Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.
Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.
Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.
Methods: A systematic review was performed.